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Abstract

Multilevel (ML) algorithms for eigenvalue problems are often faced with several types

of difficulties such as: the mixing of approximated eigenvectors by the solution process, the

approximation of incomplete clusters of eigenvectors, the poor representation of solution on

coarse levels and the existence of close or equal eigenvalues. Algorithms that do not treat

appropriately these difficulties usually fail, or their performance degrades when facing them.

These issues motivated the development of a robust adaptive ML algorithm which treats

these difficulties, for the calculation of a few eigenvectors and their corresponding eigenval-

ues, presented in this paper. The main techniques used in the new algorithm include: the

adaptive completion and separation of the relevant clusters on different levels, the simul-

taneous treatment of solutions within each cluster, and the robustness tests which monitor

the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based

on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with

a novel technique, the backrotations. These separation techniques, when combined with an

FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors

of size N on the finest level. Previously developed ML algorithms are less focused on the

mentioned difficulties. Moreover, algorithms which employ fine level separation techniques

are of O(q2N) complexity and usually do not overcome all these difficulties. Computational

examples are presented where Schr6dinger type eigenvalue problems in 2-D and 3-D, hav-

ing equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson

multigrid solver. A second order approximation is obtained in O(qN) work, where the total

computational work is equivalent to only a few fine level relaxations per eigenvector.

*This research was made possible in part by funds granted to the second author through a
fellowship program sponsored by the Charles H. Revson Foundation and in part by the National
Aeronautics and Space Administration under NASA Contract No. NASl-19480 and NASl-18605
while the author was in residence at ICASE, NASA Langley Research (',enter, Hampton, Va 23681





1 Introduction

Large scale eigenvalue problems (EP) arising from physics, chemistry and engineering

often have special features which are not always exploited by eigenvalue solvers, such

as: the EP can be approximated on several levels; only few eigenvalues and eigenvec-

tots are sought. These features can be exploited naturally by multilevel (ML) solvers

as has been done successfully by several authors (see for example [3] and [12]). Such

solvers generally involve the discretization of the problem on a sequence of levels,

relaxations employed on all levels, transfers of solutions and residuals from fine to

coarse levels, interpolation of correction from coarse to fine levels, and often a fine

level eigenvector separation technique.

Multilevel methods for EP sometimes encounter difficulties which make their ro-

bustness and efficiency questionable. Often such difficulties are due to several reasons

which we classify as: (i) mixing of eigenvectors by the used procedures, (ii) incom-

pleteness of a treated cluster, (iii) incompatible fine-coarse level representation of a

cluster. Procedures such as relaxations, transfers and ML cycles can introduce or am-

plify an eigenvector in the error component of an approximated eigenvector. This we

refer as eigenvector mixing. For example, it is known that ML procedures mix Fourier

components which are the eigenvectors of many discretized differential operators. If

the eigenvectors of an iteration operator do not coincide with the eigenvectors of the

problem to be solved, then the iteration may mix the problem's eigenvectors. This dif-

ficulty occurs especially when clusters of eigenvectors with close or equal eigenvalues

are approximated. Usually it is treated by simultaneous separation techniques, e.g.,

by a Rayleigh Ritz type projection. However, if not all eigenvectors which are mixed

by the involved procedures are approximated, e.g. the clusters are not complete, then

one can expect the separations to be inaccurate and inefficient. Thus a cluster will

be called complete relative to a procedure if it contains a whole set of eigenvectors

which are mixed by the procedure. Difficulties related to incomplete clusters may be

treated by completing the clusters and processing them simultaneously. The incom-

patibilty of clusters representation on different levels is another difficulty which has to

be identified and taken care of. In particular, not all clusters can be approximated on

an arbitrarily coarse level and the eigenvalues clustering may differ on various levels.

These difficulties and their remedies suggest the following conclusions: (i) Clusters of

eigenvectors should be treated simultaneously using a separation technique like the

Rayleigh-Ritz projection, (ii) Clusters have to be completed, (III) Different clusters

should be differently treated on different levels. This suggests that previously de-

veloped algorithms may fail in some standard situations. These include nonadaptive

algorithms, algorithms which treat the eigenvectors sequencially in clusters, which do

not complete the relevant clusters, or which do not take into account the inter-level

eigenvector nfixing. Even in cases when such algorithms work, their efficiency may be

improved by an adaptive treatment or by coarse level separation techniques as used

in this work.



This paper focuses oll a more robust and efficient algorithm for tile calculation of

a few eigenvalues and their corresponding eigenvectors. Its development was guided

by the above mentioned difficulties and their remedies. Beside its robustness, the

algorittml achieves a better computational complexity than previously known ML

eigenvalue algorithnas which use fine level projections. The robustness of the present

approach is based on the adaptive completion and separation of the relevant clusters

on different levels; the simultaneous treatment of solutions for each cluster; and ro-

bustness tests which monitor the algorithm's convergence and efficiency. A central

efficiency feature of the alg0rithin presented here results from the newly developed

Generalized Rayleigh Ritz (GRR) projection and backrotation (BR), which employ

the projection on coarse levels, adaptively with the cluster involved. This reduces in

many cases the most time consuming part of the algorithms, namely, the O(q2N) fine

level separation work, to O(qN) for q eigenvectors of size N on finest level.

These ideas are combined in an FMG algorithm which first solves the problem

on coarse levels, then interpolates tl)e solutions to finer levels where they serve as
an initial approximation to the corresponding finer level problems. On the currently

finest level, clusters are identified and tested for completeness, completed if necessary,

and improved by ML cycles using coarser levels. The eigenvalue equations is relaxed

on each level followed by FAS transfers. Generalized Rayieigh Ritz projection and

backrotations (GRR-BR) are employed On coarse levels usually, in order to separate

eigenvectors within their clusters, and to keep the coarse level representation of the

solutions as close as possible to the fine level solutions. This is done adaptively for

different clusters on appropr!ate levels. On the level on which the algorithm starts,

only a part of the sought eigenvectors are approximated usually, and more eigenvectors

with their corresponding eigenvalues are added on finer levels.

In the examples presented here for the Schr6dinger eigenvalue problem in 2-D

and 3-D, two to four fine level relaxations per eigenvector were performed. Equal

eigenvalues were calculated With more than ten decimal places and accurate results

were obtained for very close eigenvalues as wgll. A second order approximation is

obtained by 1-FMG-V(1,1)in O(qN) workl for q eigenvectors of size g on the finest

level. : :::

The present approach can be extended to nonlinear eigenvalue problems, an ex-

ample being presented in Costiner and Ta'asan [6].

We refer to the early works of Hackbusch [9] McCormick [17], Bank [1] for theory

on multilevel eigenvalue solvers and first algorithms. A sequencial ML algorithm for

linear eigenvalue problems performing the projection on fine levels is presented in

Brandt McCormick and Ruge [3]. More theory and algorithms on ML EP may be

found in Hackbusch [12]. Zaslavski in [23], [24], uses an adaptive algebraic correction

scheme cycle to compute the first eigenvector and its eigenvalue for the multigroup

neutron diffusion equation. Tlm elements of such a ML cycle, modified to the FAS

form, can be used in the algorithm presented here. Our approach differs from previous

ML approaches mainly by the following issues: emphasis on robustness, simultaneous
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clusterprocessing,cluster completion, ML separationby GRR and BR, treatment of
eigenvectormixing, treatment of closeandequaleigenvalues.The ML projection idea
wasfirst introduced by Ta'asan [21]; backrotationswereintroduced in Costiner [5].
The combination of our techniquewith domain decompositiontechniquesis natural
but wasnot analysedyet. For somedomaindecompositiontechniquesfor eigenvalue
problemsseefor exampleBourquin and d'Hennezel [2],andLuo [14]. A reviewarticle
onsinglelevellarge-scalecomplexeigenvalueproblems,containingmany references,is
Kerner [13]. For a theory on Ritz projections and on algebraiceigenvalueproblems
we refer to Parlett [19], Wilkinson [22], Golub and Van Loan [8]. The single
level techniqueto obtain the eigenvectorsby relaxations and projections is referedin
different placesassubspace,simultaneousor Ritz iterations. We refer to Nikolai [18],
Rutishauser [20]and McCormick [17]for a singlelevel algorithm and mathematical
foundations.

The paper is organizedasfollows. Section2 presentsthe GRR ML projection, the
backrotationsand the multilevel cycle. Section3 presentsand discussesthe adaptive
techniques such as the robustnesstests, the cluster completion, and the adaptive
FMG. Section4 presentscomputational examples.

2 Multilevel Projection Techniques

One of the key elements of our algorithm is the ML projection used to separate

eigenvectors corresponding to closely clustered and equal eigenvalues. To motivate

the new projection method consider a fine level problem

Ah(/h -- UhA = 0 (2.1)

where A = diag()_l,...,Aq) contains on diagonal the q sought eigenvalues corre-

sponding to the desired eigenvectors which are the columns of Uh. Assume that Uh

consists of linearly independent combinations of eigenvectors belonging to the sought

subspace. In this case, a Rayleigh-Ritz (RR) projection provides a A and a q x q

invertible matrix E such that A and (]h = UhE are solutions of (2.1). The FAS coarse

level equation after performing the projection on the fine level becomes

A2hU2hE - U2hEA = T_,E (2.2)

where T2hh = _2h_hAT2hcrtjh- I_hAhUh is the usual FAS right hand side. The form of

the coarse level solution U2hE = I_hUhE suggests that one may obtain E and h on

the coarse level from 2.2. This can be done by a generalized version of the (RR)

projection, presented next.
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2.1 Generalized Rayleigh Ritz Projections and Backrota-
tions

Solutions (E,A) of (2.2) may ,lot exist if Uh is not a basis of span(_]h). However,

as in the usual (RR) projection, if Uh approximates a basis of span(Uh), one finds

E and A such that tile projection of the residual of (2.2) on span(U2h) is minimized,

i.e., solving a q × q generalized eigenvalue problem as:

(U2h)T(A2hU2h h :-- T_h)E (U2h)TU2hEA (2.3)

The process of solving for (E, A) given (A2h, U2h, T_),) is denoted by

(E,A) _ GRR(A2h, U2h,T_,) (2.4)

The above projection is. refered later on as generalized Rayleigh Ritz Projection

(GRR) or as multilevel ML projection when several levels are involved. The GRR

projection cannot [/e directly combhleci-W]{l-1 tlie usual FAS correction Uj, = U_, +

l_h(U2h .2h,r,- "h vhj, since it will change an exact fine level solution Uh, e.g. if E is not

the identity but rather a permutation matrix. This difficulty can be solved by using
a modified FAS correction such as

.... h r2h_r
Uh = UhE + 1.2h(U21,E ,,, t,,E) (2.5)

: = -

Note that ( 2.5 ) would lead too-(q2:N) Operations, equivalent to a fine level projection

work. Thus it is desirable to replace ( 2.5 ) with more efficient techniques. Other

difficulties Inay occur for degeneral_e_-s-paces_ieii ally inatri-x Call serve as a solution

for E, thus, mixing and destroying orthog0nality of fine level solutions for example.

A natural technique to fix these difficulties is introduced and used in combination

with the multilevel projection. It is refered to as backrotation because of its geo-

metrical meaning. As suggested by the above discussion, for degenerate subspaces

the backrotation should produce block diagonal submatrices in E which are close

to the identity matrix of the appropriate dimension and eliminate permutations of

eigenvectors. A backrotation step will be further denoted by

(E, A) _ BackRotation(E, A)

A particular backrotation algorithm is:

BackRotation

Input (E, A) _:_=
=

1) Sort the eigenva!ues of A and

permute the columns of E accordingly

2) Determine the clusters of eigenvalues of A

to be considered_degenerate, and

determine the clusters to be considered nondegenerate

4
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3) For each diagonal block in E

associated with a nondegenerate cluster do:

Bring to the diagonal the dominant elements of the block by

permuting the columns of E,

and correspondingly the diagonal of A.

4) Let F be a block diagonal matrix

whose diagonal blocks are the diagonal blocks of E,

corresponding to the clusters.

Replace each diagonal block which does not correspond

to a degenerate cluster by the corresponding identity matrix

5) Set E= EF -1.

6) Change the signs of columns of E

to get positive elements on diagonal.

7) Normalize the columns of E.

Output (E, A)

2.2 Multilevel Combined Cycles

In general, not all required eigenvectors can be well approximated on an arbitrarily

coarse level. For example, fine level discretized Laplace operator eigenvectors corre-

sponding to larger eigenvalues may not be representable on coarse levels. Moreover,

the eigenvector cluster structure may differ on various levels. However, the efficient

solution of the eigenvectors corresponding to small eigenvalues may often be done

using coarse levels. A major difficulty is that solutions belonging to a cluster are

often mixed by procedures, i.e. the procedures may regard linear combinations of

solutions as a solution. This obstacle can be overcomed by simultaneously treating

all the cluster's eigenvectors and separating them on different levels.

Efficiency and convergence considerations require that the GRR projection should

be done for different clusters on different levels. Moreover, the coarsest level used to

treat a given cluster may not coincide with the level on which the GRR projection

is done. Thus, the full algorithm depends on some parameters associated with each

cluster, that determine the flow of the algorithm for that cluster. These parame-

ters are determined adaptively during the solution process (as explained in the next

section).

Following is a description of a basic ML cycle used in the adaptive algorithm

presented in the next section.

Let q' eigenvectors be approximated by j clusters on level k:

(2.1)

where, each U]_ approximates U_., the solution of

AkU_. = U_Ai+ T_ i= 1,... ,j (2.2)
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whereeach0_ is a matrix whosecolumnsare eigenvectorsand Ai is a diagonal ma-

trix whose diagonal elements are the corresponding eigenvalues. Usually, on the finest

= = .. T j diag(A 1, ., A J). For eachlevel, k m, Tk (T_,., k) = (0,...,0). Denote A = ..

cluster U]_ let l{ be the level on which the GRR-BR projection is done, and lj the

coarsest level used in the ML process for this cluster. Here it is assumed that l_j < l_.
T

Denote Ip = (l_,...,l{), lc = (llc,...,l{) and by If, a function transfer from level k to

level j. For improving a given approximation (U,,, A, Tin), a multilevel cycle consist-

ing in a sequence of cycles for each cluster in turn, is:

(U,,,,A,T,,,,Ip, lc, q') e-- CL-MLP (m,m,,,,U,,_,A,T,,,,l_,,lc, q')

Fori=l,...,j doi= _ _-

For k = m,...,l_ do:

Repeat N]_ Times::

If I_ = k then (U],, Ai, T_) _ GRR-BR(m, Ak, U_,Ai, T_,I_,k)
i ,_ i i i , iU], Relax (m, Ak, U/,,A, T_, k, l_)

If k > l_ then:

Set k = k - i,

. i k U iUk: k+l k+l

T]," = Ik+ 1_'(T_+ 1i_ Ak+l U_+I) + AkU_

End ......

For k = l_,...,m do: : === : =::::=::: :
• k i

If (k > l_,) .Correct V_. = U_. + Ik_l(Uk_ ! -- I_-lU;k)

Repeat N_ Times

End

End

The GRR-BR algorithm used above is the following:

(U_., Ai, Tt_) _ GRR-BR(m,A_,,U],, i" A ,T],,Ip, k)i' "

Perform

(E, A') ,--GRR(Ak, U_,T_)
(E, Ai) _B ackRotat ation(E, h')

UI=U E
T =T E

U__ReIax (m,Ak,U_,Ai,T2,k, l_)
If l_= k then (U_,Ai,T_)_ GRR-BR(m, Ak, U_,AI,T_,I_,k)

Observe that in CL-MLP the clusters are treated sequentially and within each

cluster the solutions are treated simultaneously in the ML cycle. A simultaneous

cycle for several clusters is obtained by grouping the clusters into a single larger



cluster and applying CL-MLP to it. This may be used to improve separation between

clusters. Observe that if for each cluster the GRR-BR projection is performed on

the finest level, the algorithm still requires less work than an algorithm performing

the fine level projection for all clusters simultaneously. Moreover, if mixings occur

on coarse levels, one may expect an algorithm using fine level separation to have

a poor efficiency; a coarse level separation usually improves the efficiency in such

cases. For well separated eigenvalues the projection may not be needed except at

initial coarse level stages of the FMG, later the eigenvaiues determine the separation

of eigenvectors via the multilevel cycles. The same holds for well separated clusters

which do not need a simultaneous separation. This is especially useful for a larger

number of eigenvectors, belonging to well separated clusters (e.g. already for 10

eigenvectors the improvement can be noticeable). Accurate normalization, if needed,

can be performed as the last step only on the finest level.

Several parameters in this algorithm have to be specified, such as coarsest levels

lc and lp, and numbers of iterations. These parameters are chosen by the adaptive

algorithm discussed in next section. The choice of lp and Ic depends on cluster and

stage of the algorithm. The nmnber of iterations Nk can be deduced for simple cases

based on Fourier or 2-level cycle analysis or in general cases, by robustness tests

performed during execution. The number of relaxations can vary with level. In the

computational tests one or two relaxations per fine level passing were performed.

sought

3 Adaptive Multilevel Algorithms

For robustness, the construction of an adaptive version of the CL-MLP is essential

since the grouping of eigenvectors into clusters, the sizes of the clusters, the coarsest

level corresponding to a given cluster are not known in advance, usually. Eigenvectors

belonging to clusters usually are mixed by different procedures. This deteriorates the

algorithms' efficiency and often prevents convergence. A typical difficulty occurs

when a procedure approximates only several eigenvectors of a cluster. Then the

nonapproximated eigenvectors usually are the dominant components of the errors

which are hard to eliminate due to mixing. This suggests to complete the clusters and

separate the solutions within clusters whenever necessary. Simultaneous techniques

treating at a time all solutions belonging to a complete cluster, can be easier coupled

with separation techniques at different stages, thus acquiring better efficiency than

sequencial techniques which hardly avoid difficulties due to mixing.

In the adaptive algorithm, the clusters are tested for completion and completed.

The cluster completion is tested on all current finest levels and performed on several

levels since the structure of clusters can differ on different levels.

The full multilevel solver described below starts on coarse levels, and solves there

for as many eigenvectors as possible. Then it uses those as an initial approximation

for finer level solutions where more eigenvectors are added if needed.



Two important parts of this algorithm are the con)pletionand addition of clusters.
The completion of a cluster is doneby adding in turn a new vector and improving it
by multilevel cycles. An approximate elgenvalueis associatedwith this eigenvector,
by a Raylelghquotient. If the eigenvalueis closeto the cluster then the new vector
is added to the cluster. If the found eigenvaluedoesnot belong to the cluster then
the cluster is consideredcomplete. The convergenceof the additional eigenvectoris
not sought. At the end, tile completecluster is improvedby severalCL-MLP cycles.

Theadditlon of a new clusters is usually done{i_tile first stagesof the algorithm
when not enough complete clusters are found. This is performed by the cluster
completion algorithm describednext.

Denotebydj the current dimensionof the cluster U_. The cluster completion and

cluster addition algorithms are given by: : :

(j, U_, A j, T_, Ip, Ic, q') _Complete-Cluster(j, U]£, Aj, T_, l{, I{, q')

Unt|l (Cluster-Completion-Test "- TRUE) Do
Choose random ¢ ::: :: _-:_ _:_:: _ -

Until < Ak¢, ¢ > / < ¢, ¢ !>:_a--n-dresiduals Stabilize Do:

(¢, A,,_,j T ik, 0,/_, l)_CL-MLP (k,¢,. Am,_, ,j Tt_, 0,/{, 1)

Separate ¢ from (U_,...,U_)

Set ._ =< Ak¢,¢ > / < ¢,¢ >

A j ,-- diag(A j, _)

q'= q'+ 1, dj = dj+ 1

End . = . : ::....

Perform ( I/_, AJ, T_, IJp,lJ, dj ) *-CL-MLP( k, Uik, AJ, T_, tip, lJ, dj )

(j, Uk, A, Tk, Ip, l_, q') _Add-Cluster(j, Uk, A, Tk, lp, l_, q')

Set 3."= j + 1

(j,U], J J J J, A, T_, Ip, l_, q') _Complete-Cluster(j, U{, h , T_, I j, l{, q')

Set Uk=(V_,...,U_), A=(A',...,A j)

2 ": 2:

The Separation of ¢ from the other eigenvectors may be performed by orthogo-

nality, projection or by a ML cycle.

Another crucial part of the algorithm are the robustness-tests. Robustness tests

are techniques which find parameters to be used in a certain procedure for given

data such that the procedure will be convergent and will be as efficient as possible.

Typically, the Procedure is tested over a set of data, or information from intermediate
results is used in order to reduce the work involved in testlng. Next, for Simplicity,



we consideronly tile robustnesstest which provides tile parameters(Ip, Ic) for the

CL-MLP cycle. This ensures the proper values for the parameters Ic, lp. in order

to get convergence and the best attainable efficiency for CL-MLP. This is done by

examining for clusters the different possible values for l_,Ip. The use of an FMG

algorithm suggests that these parameters for a given cluster will stabilize with the

refinement process. Thus, a notion of a stabilized cluster is introduced in order to

save unnecessary work in looking for new values for lc, Iv for stabilized clusters.

A complete cluster on level L is called stabilized if it corresponds to a complete

cluster from level L- 1 or L+ 1 in the sense of the number of eigenvectors in the cluster,

the values of the eigenvalues and the eigenvectors approximation. For stabilized

cluster, corresponding to a coarser level stabilized cluster, we take the lc, lp values

from the corresponding coarser level cluster. For not stabilized clusters, which would

exist usually on coarse levels only, we perform a search to obtain best values for lc, lp.

This is done by performing ML cycles with different choices of these parameters, and

choosing the ones that perform best. This is summarized in the next algorithm. Such

tests are inexpensive when performed on coarse levels, and often lead to significant

fine level work savings. Moreover, such tests are essential to ensure the algorithm's

convergence.

Convergence is always obtained since at least the single level cycle converges, being

a subspace iteration algorithm [8].

Denote by (l_., l_, m) the Ip and Iq parameters, for the level m cycle for the cluster

j, and by #(l_,l_,m) := #(CL- MLP(m,A_,U,,_,A, Tm, I_,IJ,q')) the convergence

rate (measured by the residual decrease) of the CL-MLP cycle for cluster j on level

m, using the parameters (lp, l_). The following algorithm updates (l_,, l_) on level m:

(Ip, I_, m) *-- Robustness-Test (m, A,,_, Urn, A, Tin, Ip, l_, q')

For j Do:
A j A iIf(I m-,-- ,,.-'21--<C)

then

(/_, IJc,m) = (l_, l_, m - 1)
else

If (IA,J_- A___l >_ c ) or if (AJ,_) is not approximated

then

Solve for (l j, l_, m)

mintL,_#(lJp, lJc, m) : lJc < lip < m,
else

(I¢, l_, m) = (l j, lj, m - 1)
endif

endif

Observe that since the initial values for lj, l_ on any level are taken from the next

coarser level, tim search needed in the Robustness-Test is over just a few choices of



the p_ra_!neters,
The full ML algorithm usesasbuilding blocksthe CL-MLP, Add-Cluster, Complete-

Cluster and Robustness-Testalgorithms describedbefore. It is definedas:

Adaptive-FMG(m, q, A)

Set k = 1, q' - 0, j = 0, I_ = k, I_ = k

Until (q' > q or q' > a dimk) Perform

(j, Uk, A, Tk, Iv, lc, q') _Add-Cluster(j, Uk, A, Tk, lv, I_, q')

(Uk, A, Tk, Iv, Ic, q') ,--CL-MLP(k, Uk, A, Tk, Ip, l_, q')

Until k > m Do:
n

If k < m then:

Set k k + 1, Uk k= = Ik_lUk_l, Tk = 0

endif

If (q' > q) then:

If (Cluster-Completion-Test=TRUE then:

(Uk, A, Tk, Iv, I_, q' ) _--CL-MLP( k, Uk, A, Tk, lv, I_, q')
Else

(j, UJk, Aj, TJk, l¢, I_, q') _Complete-Cluster(j, U_, Aj, T_, l¢, l_, q')

(Uk, A, Tk, lp, l_, q') _CL-MLP( k, Uk, A, Tk, lp, lc, q')

endif

Else

Until (q' > q or q' > a dimk) Perform

(j, Uk, A, Tk, lp, Ic, q') _Add-Cluster(j, Uk, A, Tk, Ip, l_, q')

( Uk, A, Tk, lv, I_, q') _CL-MLP( k, Uk, A, Tk, Iv, I¢, q')

endif

22:

3.1 Storage and Complexity

For the Adaptive-FMG algorithm, storage is required....... for the q eigenvectors of size N

on the finest level, the potential and the corresponding right hand sides, on all levels,

giving anpverall estimate of memory of order O(3(N + 1)) for problems in 2-D and

3-D. The FMG work requires O(N) operations per eigenvector. The work performed

on coarsest levels should be added to these estimates. In the performed tests where

a few eigenvectors were sought, the coarse level work was usually a fraction of the

finest level work. If accurately zero scalar products are needed on finest levels then

orthonormalizations or projections may be required within the finest level degenerate

or close clustered eigenspaces. However, as can be seen in the computational ex-

amples , accurate orthogonality inside degenerate clusters may be obtained by coarse

level separation also.

In the computational examples presented here, a complexity of O(qN) is obtained.
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4 Computational Examples and Discussions

We have chosen several examples in which we focus on different aspects of the method.

The first example is of an adaptive algorithm in which we take a case of special

difficulties in terms of clustering of eigenvalues, and correspondence of these clusters

between levels. The second example shows that it is enough to treat the clusters in a

sequential manner, and separation has to be done within each cluster only to obtain

good convergence and accurate separation.

The third example shows that the new multilevel projection technique may be

performed on coarsest levels, even in cases with closely clustered or equal eigenvalues,

thus reducing the computational work significantly. A last example shows that the

same efficiency is obtained for problems in 3-D as for problem in 2-D.

In all examples the periodic boundary conditions SchrSdinger eigenvalue problem

(A - V)u = Au (4.1)

defined on f/-- [0, a]d (d=2 or 3) where a = 2_r/10, was considered. The potentials

are chosen such that the distribution of eigenvalue present special difficulties. A finite

difference discretization on cartesian grids is used.

Example I: Adaptive Algorithm

As an example for the adaptive algorithm we have chosen a potential which deter-

mines a distribution of eigenvalues which present special difficulties. Not only closely

clustered eigenvalues are present but also the correspondence of the clusters between

levels is not appropriate, as explained later.

The potential for this case is V(x, y) = 5+38in(lOx) and the results are presented

in Tables 1 and 2. The first q = 12 eigenvalues were required, and have been approx-

imated using an adaptive 1-FMG-V(1,1) algorithm which uses as its coarsest level a

employs 4 × 4 coarsest grid.

The ith eigenvalue and eigenvector will be denoted next by )_i and v_. The boxes

in Table 2 show the clusters of close or equal eigenvalues (with (-) sign) found by

the algorithm (the formats are chosen to outline the equal digits). As can be seen

there the cluster structure on the different levels is not the same. Particularly, level 2

cluster structure differs from the level 1 cluster structure. Observe that the cluster of

6 eigenvalues on level 1 ()_6-)_11), with multiplicities 1 - 4 - 1, has no correspondence

on level 2.

For demonstrating the adaptive flow of the algorithm we give a full history of one

specific run, for the potential discussed here.

The particular algorithm described in section 3 is used.

The algorithm started on level 1 adding eigenvectors until the cluster containing

$12 was completed. Note that $16, the last eigenvector that was found belongs to the

next cluster, confirming the completeness of the last sought cluster. Observe that

on level 1, _12 belongs to a cluster consisting of two degenerate subspaces, each of

11



dimension 2, and the eigenvaluescorrespondingto thesedegeneratesubspacesare
closeto within O(10 -4 ) relative difference.

The relevant eigenvectors vl,..., v15 were interpolated to level 2 where they pro-

vided initial guesses for the level 2 algorithm. Here the completion of clusters restarted

but this time working with tile cluster structure from level 1 and using two level cycles.

A test was done for the efficiency of a simultaneous cycle with fine level projection.

The cycle was performed to provide first approximations of the level 2 eigenvalues.

The cluster structure and eigenvalues obtained were compared with the ones of level

1. Since the agreement was not satisfactory, except for va, a cluster completion algo-

rithm started with v2. The completion continued until the complete cluster containing

the last sought eigenvector was obtained, (e.g. for level 2, tile desired v12 belongs to

the cluster vl0 - v13. The completion was ensured by the far value of )q4). Then the

relevant eigenvectors were updated by one or a few cycles.

The solution obtained oli level 2 was interpolated to level 3 where a cluster comple-

tion test was satisfied only by the first cluster, vl. The cluster completion algorithm

was applied to the remaining eigenvectors (using cycle robustness tests and the cluster

completion tests). This resulted in few cycles per eigenvector. The parameters lc and

Ip were found in the following way: 1) for cluster 1, (va), the values were obtained

from previous level since this cluster was stabilized from the beginning; 2) For cluster

2 and 3 (vs - V9 and v_9 - v_3 ) Ic and Ip were taken from leVel 2 values since these

clusters resulted stabilysed after the cluster completion; 3) Robustness tests were

used for cluster 4 since the eigenvalues Alo - A13 on level L=3 and the next coarse

level L=2 were not enough close. Then one cycle (here V(1,1)), was performed for

each cluster.

The level 4 cluster completion test was satisfied by the first 3 clusters, eigenvalues

vl - v9 and their parameters were taken from level 3. The cluster completion algo-

rithm was again applied to cluster 4, (Vlo - v13), a few cycles being sufficient, then

the parameters were taken the corresponding level 3 ones since the cluster resulted

stabilysed. One cycle was performed for each cluster.

The level 5 cluster completion test was satisfied by all relevant eigenvectors (vl -

v,3). One cycle (V(1,I)), was performed for each cluster. The lc and Ip for the separate

clusters, in the final cycles, on levels 3, 4, 5 were found as: for vl: lc = Ip = 1, for

the other clusters, containing v2,...,v13 l, = Ip = 2 were obtained, ( a test for the

asymptotic Convergence rate, for cluster vl0 - v13 may lead to l, = lp = 3, but such a

test was not used in this run).

The additional last eigenvector obtained in the cluster completion test, used just

to ensure that the previous cluster was complete, was not needed and not used in

further steps. Usually its convergence was poor since the algorithm didn't separate

it from the next eigenvectors in its cluster e.g. on level 2, to separate _14 from the

next 7 eigenvectors with close eigenvalues.

Observe that a second order approximation and a good convergence rate of order

O(10 -2) for the first cycle are obtained. A simultaneous cycle for all clusters with

12



separationon the coarsestcommonlevel for all clusters (herelevel2 ) would hnprove
the efficiencyof first cyclebut wasnot needed. (This alsowould improve the scalar
products which resulted of order 10.4 after first FMG cycle, in this case,accurate
orthogonality being obtained by tile algorithm describednext).

Observethat this algorithm is of order O(qN) if one does not use fine level sep-

aration inside the clusters. The adaptive coarse level work on levels 1, 2, took ap-

proximately 1/6 of the computer time and on levels 1, 2, 3, approximately 1/4 of the

computer time. This is a fixed time and it would contribute only with 1/16 if level 6

would be employed too.

E

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

level 1

.48E+2 .37E-13

• 53E+2 .44E-13

•61E+2 .38E-13

.66E+2 .68E-13

.55E+2 .39E-13

.52E+2 .12E-12

.59E+2 .31E-12

.61E+2 .20E-12

.62E+2 .17E-12

.73E+2 .13E-12

.58E+2 .34E-12

.54E+2 •39E-12

.51E+2 .70E-12

.44E+2 .96E-12

.53E+2 .16E-12

.69E+2 .19E-06

Table 1

1 -FMG-V(1,1), 2-D, 16-EV, 5-Lev

Residuals at Start and End of ML Cycles

level 2 level3 level 4

.69E+0 .97E-13 .22E+0 .30E-12 .60E-1 .64E-04

.3OE+2

.30E+2

.30E+2

.30E+2

.llE+3

.45E+2

.45E+2

.45E+2

.45E+2

• 11E+3

.12E+3

.12E+3

.12E+3

.12E+3

level 5

.14E-12 .llE+2

.80E-13 .llE+2

.17E-12 .lIE+2

.24E-12 .llE+2

.32E-12 .16E+2

.54E-11 .16E+2

.57E-11 .16E+2

.71E-11 .16E+2

.15E-09 .12E+3

.41E-09 .12E+3

.81E-11 .12E+3

.50E,-04 .12E+3

.19E-05 .12E+3

.55E+01

•35E-12

.29E--12

.30F_.- 12

.45F_12

.35F_,-12

.32F_,-I 2

.41E.-12

.33F_,- 12

.3oF_,-09

.16F_¢-09

.26F_,-09

.5oE-09

• 17E-06

.30E+l .86E-03

.30E+I •86E-03

.30E+I .54E-02

.30E+l .54E-02

.44E+1 .42E-02

.44E+1 .42E-02

.44E+1 .39E-02

.44E+1 .16E-02

.43E+2 .72E-08

.43E+2 .20E-08

.43E+2 .21E-05

.43E+2 .16E-05

.44E+2 .34E-02

.15E-1 .14E-04

.76E+0 .73E-04

.76E+0 .73E-04

.76E+0 .11 F_,-02

.76E+0 .11E-02

.llE+I .82E-03

•11 E+ 1 .82F_r03

.11 E+ 1 .83F_,-03

.11E+1 .93E-03

.12E+2 .33E-02

•12E+2 .33E-02

•12E+2 .29E-01

.12E+2 .29E-01

E

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Table 2

1 -FMG-V(1,1), 2-D, 16-EV, 5-LEV

EigenvMues at End of ML Cycles

level 1 level 2 [ level 3 level 4 level 5

.495721389176E+1 .495552134150E+l .495509317773E+1 .495498173425E+1.496347395806E-{-1

.860204208719E+2

.860204208719E+2

.860569469139E+2

•860569469139E+2

.1670 E+3

.167113893828E+3

•167113893828E+3

.167113893828E+3

.167113893828E+3

• 16715 E+3

.248170840742E+3

.248170840742E+3

.248207366784E+3

.248207366784E-{-3

.329264313697E+3

.999213342469E+2

.999213342469E+2

.9995 E+2

.99998 E+2

.194919376181E+3

.194919376181E+3

.194962161804E+3

.194962161804E+3

.329185001547E+3

.329185001547E+3

.329227787655E+3

.329227787656E+3

.42419190801 IE+3

.424295844705E+3

• 103677004418E + 3

.103677004418E+3

• 10371 E+3

• 10375 E-{-3

.202435153808E+3

.202435153808E+3

.202479632146E+3

.202479632146E+3

.384812002762E+3

.384812002762E+3

•3848590736 E+3

•3848590739 E+3

.483580557031E+3

.104634633842E+3

.104634633842E+3

.1046 E+3

.1047 E+3

.204351758395E+3

.204351758395E+3

.204395E+3

.204396 E+3

.399841022256E+3

.399841022256E+3

.399888846 E+3

.399888846 E+3

.499567983067E+3

• 104874695012E+3

•104874695012E+3

•10491 E+3

.10495 E+3

•204831900326E+3

.204831900326E+3

.504876918643E+3

.204876918643E+3

.403673103803E+3

.403673103808E+3

.403720980600E+3

.403720980600E+3
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Example II: Fine level Separation
In tile next example tile potential V(x,y) = 5 + 3sin(lOx) + 2cos(lOy) causes

a further spliting of the eigenvalues. The clusters were treated sequencially and the

projection for each cluster was performed on the finest level to provide accurate finest

level separation inside clusters. The results, for 9 eigenvectors, are presented in Tables

3 and 4. A 10-FMG-V(1,1) algorithm was used to show tile constant convergence rate

per cycle, T1)e coarsest relaxation level for clusters 2 and 3 was level 2 and for the

first eigenvector was level 1. On levels 1 and 2 the adaptive algorithm and few cycles

were used. All eigenvectors came out accurately orthogonal (10 -13 scalar products

on level 4).

This shows that it is enough to perform separation only within clusters.

Table 3

10 -FMG-V(I,1), 2-D, 9-EV, 4-Lev

Residuals at Start and End of ML Cycles

level 1 level 2 level 3 level 4Erect,

1

2

3

4

5

6

7

8

9

0.48E+02 0.14E-13

0.46E+02 0.83E-09

0.52E-{-02 0.29F_,-09

0.56E+02 0.56E,-I 0

0.54E+02 0.85F_,-09

0.53E+02 0.57F_,-02

0.53E+02 0.68E-I I

0.41E+02 0.13F_,-I 0

0.43E+02 0.S0E-02

0.83E+00 0.12E-12

0.30E+02 0.48E-09

0.30E+02 0.12E-08

0.30E+02 0.73E-09

0.30E+02 0.55E-08

0.11E+03 0.40E.-05

0.45E+02 0.57F_,-05

0.45E+02 0.29E--05

0.I IE-{-03 0.14E--05

0.27E+00 0.11E--11

O.llE+02 0.42E-12

0.11E+02 0.75F_,-12

0.11E+02 0.93Er-12

0.11E+02 0.17E-11

0.16E+02 0.61E-12

0.16E+02 0.10F_.-11

0.16E+02 0.82E,-12

0.16E+02 0.83E-12

0.72F_,-01 0.4IF_,-11

0.30E+01 0.21E-11

0.30E+01 0.52E-11

0.30E+01 0.56E--11

0.30E+01 0.12E-10

0.44E+01 0.16F_,- 10

0.44E+01 0.39E-10

0.44E+01 0.33E--10

0.44E+01 0.48E-10

:: 7:

Table 4

10 -FMG-V(I,1), 2-D, 9-EV, 4-LEV

Eigenvalues at End of ML Cycles

level 1 level 2 level 3 level 4

-0.49378951 S604E+01 -0.493543833853E+01 -0.493481214576E+01

E

1

2

3

4

5

6

7

8

9

-0.494698319454E+01

-0.860202443918E+02"

-0.860202443918E+02

-0.860406326305E+02

-0.860406326305E+02

-0.1670E+03

-0.167113893828E+03

-0.167113893828E+03

-0.16713E+03

-0.9991E+02

-0.999361E+02

-0.999362E+02

-0.9997E+02

-0.19491E+03

-0.19493E+03

-0.19495E+03

-0.19497E+03

-0.10367E+03

-0.1036931E+03

-0.1036937E+03

-0.1037E+03

-0.20243E+03

-0.20245-4-03

-0.20247E+03

-0.20249E+03

-0.10463E+03

-0.104650E-4-03

-0.104651E+03

-0.10469E+03

-0.20434E+03

-0.20436E+03

-0.20439E+03

-0.2044E+03

Example III: Coarse Level Separation, 2D and 3D

In the next two runs (Tables 5, 6) we show that a coarsest level separation (Ic =

It = 1), even for clusters containing very close and degenerate eigenvalues, can be

enough to provide accurate finest level separation. In the degenerate clusters the

eigenvectors were not orthogonalized on finest levels but resulted so from the FMG,

where orthogonality was imposed on the coarsest level solution (in the FMG, not

during the cycles). This implies an O(qN) algorithm even for close clustered cases.

Table 5 shows results for a problem in 2-D with a potential V(x,y) = 2 +

O.lsin(lOz + 10y), which produces a splitting of the first cluster of four eigenval-

14



uesinto two degenerateclusterswhoseeigenvaluesarecloseto within 10-4. A second
order approximation wasobtained by an 1-FMG-V(1,1) algorithm and the asymp-
totic convergencerate per fine levelcyclewas1/10. Observethe 13equaldigits of tile
degenerateeigenvalues,on all levels. On level5, 8 cycleswereperformed to showthe
constant convergencerate per cycle, (seecycles3 and 8 wheretile convergencerate
is accurately 1/10). The eigenvectorscameout accurately orthogonal, even in the
degenerateeigenspaces,although the projection wasperformedonly on the coarsest
level, (the eigenvector'sscalarproducts being of order 10 -13 on level 5).

The same efficiency is obtained for problems in 3-D as can be seen in Table 6.

The potential V(x, y, z) = 2 + sin(20x + 10y - 10z) determines a cluster of six close

eigenvalues grouped into two clusters of two and four equal eigenvalues (with 13

digits). Observe the 1/10 convergence rate in cycle 3 and the first 6 common digits

of the eigenvalues in the cluster.

These examples indicate that the reduction of complexity of the newly developed

algorithm from O(q2N) to O(qN) is quite general and also works for rather difficult

cases.

1

cycle II vector [

1 1

2

3

4

5

1 1

2

3

4

5

3 1

2

3

4

5

8 1

2

3

4

5

Table 5

-FMG-V(1,1), 2-D, 5-EV, 5-LEV

first res last res [ eigenvalue
LEVEL4

0.18E-02 0.13F_,-03

0.30E+01 0.43E-02

0.3OE+01 0.43F_r02

0.30E+01 0.43F_,-02

0.30E+01 0.43E-02

-0.19999752449715E+01

-0.I 0162979203934E+03

-0.10162979203934E+03

-0,I 0172931140738E+03

-0.10172931140738E+03

LEVELS

0.46E-03 0.36E-04

0.76E+00 0.40E-03

0.76E+00 0.40F_,-03

0.76E+00 0.40E-03

0.76E+00 0.40E-03

0.35E-05 0.33E-06

0.27E-04 0.26E-05

0.27F_,-04 0.26E-05

0.27E-04 0.26F_,-05

0.27E-04 0.26E-05

0.97F_,-11 0.26E-I0

0.29E-09 0.3IF-,-10

0.29F_,-09 0.31E-10

0.29F,¢-09 0.3IF-,-10

0.29E-09 0.31E-10

-0.19999750026388E+01

-0.10186970728937E+03

-0.10186970728937E+03

-0.10196970729590E+03

-0.10196970729590E+03

-0.19999749801202E+01

-0.10186970049930E+03

-0.10186970049930E+03

-0.10196970049780E+03

-0.10196970049780E+03

-0.19999749799142E+01

-0.10186970048459E+03

-0.10186970048459E+03

-0.10196970048302E+03

-0.10196970048302E+03
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Table 6

1 -FMG-V(I,I), 3-D, 7-EV, 3-LEV,

cycle 1[ vector [ first res I last res [ eigenva]ue

LEVEL3

1 [ 0.I5E--02
2 0.25E-01

3 0.25E-01

4 0.23E--01

5 0.23E-01

6 0.23E-01

7 0.23E-01

o.IOE-O3

0.25E-02

0.25E-02

0.21F_,-02

0.21E-02

0.21E-02

0.21E,-02

-0,19991341655960E+01

-0.10072012662990E+03

-0.10072012662990E+03

-0.10072068269198E+03

-0.10072068269198F,+03

-0.10072068269198E+03

-0.10072068269198E+03

5 Conclusions

A robustand efficient ML algorithm to compute a few eigenvectors and the corre-

sponding eigenvalues for largescale eige_walue probIemshas been developed. The

algorithm's robustness results from the adaptive completion and treatment of clus-

ters, the simultaneous treatment of solutions in each duster, and from tests which

monitor the algorithm's convergence and efficiency. The algorithm treats central dif-

ficulties such as: the poor solution representation, on coarse levels _ the existence of

clustered eigenvalues, the approximation of incomplete clusters, and the mixing of

approximated eigenvectors during the solution process. Its eigenvector separation ef-

ficiency stems from a new ML projection technique which is a generalization of the

Rayleigh Ritz projection, combined with backrotations.

In the cases when the algorithln properly separates the eigenvectors on coarse

levels, the algorithm's complexity is of O(qN) for q eigenvectors of size N on the

finest level. The numerical tests showed that an accurate fine level separation was

obtained by the coarse level projection, even for problems with very close or equal

eigenvalues. " "

The results of the numerical tests for SchrSdinger eigenvalue problems, show that

the algorithm achieved the same accuracy, using the same amount of work (per eigen-

vector), as the Poisson multigrid solver. A second order approximation is obtained

using the 5-point in 2-D and 7-point in 3-D discretlzed Laplaceian, by 1-FMG-V(1,1)

in O(qN) work. This means that the work was of order a few (2-4) fine level re-

laxations per eigenvector. The adaptive work was only part of the fine level work

and enhanced the fine level cycle efficiency. Constant convergence rate per cycle was

obtained for the presented cases. The robustness of the algorithln has been demon-

strated on problems with eigenvalue distribution that present special difficulties.
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